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Part 2: Velocity, pressure and heat transfer 
measurements 
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Velocity, pressure and heat transfer measurements have been made inside a 
rotating cavity with a radial inflow of fluid for a wide range of f low rates and 
rotational speeds. The air-filled cavity comprised two discs and a peripheral 
shroud; five different perforated and slotted shrouds were used to test the effect of 
inlet geometry. The tangential component of velocity was measured, in the source 
region and in the interior core between the Ekman layers, using a laser-doppler 
anemometer. For the outer part of the source region, the data were consistent with 
free vortex flow; for the interior core, the data were, in the main, in good agreement 
with existing nonlinear laminar and turbulent Ekman layer theory. Pressure 
measurements, made for only one of the six shrouds, were in reasonable agreement 
with a simple theoretical model. Under some conditions, radial pressure drops of 
magnitude over twenty times that associated with solid-body rotation were 
measured and predicted. Heat transfer measurements were made with one of the 
discs heated. The variations in the magnitude of the Nusselt numbers on the hot 
disc were consistent with the hole geometry in the shrouds. For similar conditions, 
the magnitudes compared with those reported for radial outflow tests. 
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In Part 1 of this work 1 the flow structure of a rotating 
cylindrical cavity with a radial inflow of fluid was studied. 
A simple model of the flow inside the source region was 
used to estimate the extent of this region, and flow 
visualization was used to study the flow structure and to 
obtain measurements of the size of the source region. 

In Part 2, experimental measurements of the 
tangential component of velocity, the radial pressure drop 
and the Nusselt numbers are presented. The apparatus is 
described and measured velocity distributions are 
compared with values obtained from solutions of the 
linear and nonlinear Ekman layer equations using 
momentum-integral techniques 2. Theoretical estimates of 
the pressure coefficient are compared with measurements, 
and the measured values of the Nusselt numbers are 
discussed. 

The experimental apparatus 
The rig used for the velocity, pressure and heat transfer 
experiments is described in Part 1. 

The tangential component of velocity inside the 
cavity was measured by laster-doppler anemometry (LDA). 
The system comprised transmitting and receiving optics 
arranged in the backscatter real-fringe mode. For  the 
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transmitting optics, a Spectra Physics argon-ion laser 
(operating in the single-line mode of 514 nm at an output 
power of approximately 150 mW) was used with a 50-50 
beam splitter, which produced a separation distance of 
30mm, and a 300mm focal length convex lens. This 
arrangement produced a nominal optical probe volume of 
0.16 mm diameter, 3.28 mm length, with a fringe spacing 
of 5 ~tm. The optics were mounted on a traversing table 
that enabled the probe volume to be moved in a radial 
direction. All velocity measurements were made with the 
probe volume in, or near, the mid-axial plane (z/s = 0.5) of 
the cavity. 

The backscattered light from the probe volume 
was steered by a mirror through a receiving lens and 
pinhole to a photomultiplier. The signal from the latter 
was processed by a Cambridge Consultants tracking 
filter. The tracking filter, which could accept doppler 
frequencies up to 15 MHz, produced an analogue voltage 
proportional to the doppler frequency. The true time- 
average of this voltage, which was proportional to the 
time-average velocity, was obtained from a Solartron 
Time-Domain Analyzer. 

The seeding for the LDA tests was achieved by a 
Norgren 'micro-fog lubricator', which generated oil 
particles of approximately 2 p.m diameter. As for the flow 
visualization, the air immediately outside the cavity was 
seeded with these particles, which were then drawn into 
the cavity along with the cooling air. Further details of the 
optical instrumentation are given by Pincombe 3. 
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The velocity distribution 

Figs 1 to 4 show the radial variation of tangential velocity 
for shrouds A, B, E and F, respectively; no velocity 
measurements were made with shrouds C and D. 'Free 
vortex' and 'linear theory' refer to Eqs (1) and (2), 
respectively, or Part 1. The 'non linear theory '2 was 
started with V,/~r=1 at x=c u2, where c is the 
empirically-determined swirl fraction of the incoming 
fluid; according to the linear theory in Part 1, this value of 
x denotes the limit of reverse flow in the source region. 

In Part 1 the radial extent of the source region was 
correlated, for shrouds A to D, using a swirl fraction of 
c=0.54 for laminar flow and c =0.59 for turbulent flow. 
For  the curves shown in Figs 1 and 2, a value o fc=0 .59  
was used for both laminar and turbulent flow. The 
intercept of the free vortex curve and the 'linear theory' 
curve mark the approximate edge of the source region. 

Fig 1 shows the variation of V~,/f2r with x for (a) 
laminar flow (Re~ < 180) and (b) turbulent flow (Rer > 180) 
when shroud A (the 'central-inlet' shroud) is used. In Fig 
la  the non linear laminar curves are in good agreement 
with the data for R%/105= 1.97 and 4; for R%/lO 5 =6,  
the non linear curve is slightly higher than the measured 
velocities. The non linear turbulent curves in Fig lb are in 
good agreement with the measured velocities for all three 
values of R%. 

Fig 2 shows similar results for shroud B (the 'twin- 
inlet' shroud). Again, the agreement between the non- 
linear curves and the experimental data is good, with the 
exception of the turbulent results, in Fig 2b, for 
ReJlO s = 0.985. 

Fig 3 shows the velocity distribution for shroud E 
(the 'slotted-inlet' shroud). No flow visualization was 
carried out to measure the extent of the source region for 
this shroud; however, a value of c=0.42 provided a 
reasonable fit to the data, most of which are believed to be 
in the source region. 

Fig 4 shows the radial variation of tangential 
velocity for shroud F (the 'foam-filled shroud'). For  this 
shroud, the fluid was assumed to enter the cavity with 
solid-body rotation (a contention that was supported by 
the measurements of the size of the source region in Part 
I); the swirl fraction c was accordingly chosen to be unity. 

The results shown in Fig 4a for laminar flow are, in the 
main, in good agreement with the non linear curves. In 
Fig 4b, the agreement between the measured velocities 
and the turbulent non linear curves is also reasonable. 
The source region for shroud F is much smaller than that 
of the other shrouds, and most of the data are in the 
interior core. 

The pressure drop across the cavity 

Theoretical estimate of the pressure drop 

In regions where viscous effects are negligible and where 
the radial and axial components of velocity are small 
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Fig 1 Variation of tangential component of velocity with 
radius for isothermal flow (shroud A): (a) Re~<180, 
laminar theory: (b) Re.>  180, turbulent theory 

Notation 
a Inner radius of disc 
b Outer  radius of disc 
c Inlet swirl fraction 
C~ Pressure coefficient = Ap/½p~Eb 2 
C w Flow rate coefficient = Q/vb 
k Thermal conductivity 
Nuav Average Nusselt number=qavb/k(T~-T0av 
p Pressure 
q Heat flux 
Q Volumetric flow rate 
r Radial coordinate 
r e Radius of edge of source region 
Rer Radial Reynolds number = Cw/2~x 
Re~, Rotational Reynolds number=g)bE/v 
s Axial spacing between rotating discs 
T Temperature 
V~ Tangential component  of velocity relative to a 

stationary reference frame 

x Dimensionless radial coordinate = rib 
Xa Dimensionless inner radius = a/b 
xe Dimensionless radius of edge of source 

region = rJb 
z Axial coordinate 
Ap Pressure drop from x = 1 to x = xa 
2 =2L or 2T for laminar or turbulent Ekman- 

layer flow 
•L -- t1:9~r)C.Re~ 1/2 
AT =sgn(Q)2.221Cwr/~Re~ 1/z 
v Kinematic viscosity 
p Density 
Q Angular speed of cavity 

Subscripts 
av Radially-weighted average value 
I Pertaining to conditions at inlet to cavity 
s Pertaining to cavity-side surface of heated disc 
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Fig 2 Variation of tangential component of velocity with 
radius for isothermal flow (shroud B): (a) Re,<180, 
laminar theory; (b) Re,> 180, turbulent theory 

compared with the tangential component,  Vo, the radial 
pressure gradient can be calculated from 

ld__p __ Vff (1) 
p dr r 

This equation is valid, away from the Ekman layers, for 
the source region and for the interior core; and, if the sink 
layer is ignored, it can be used to calculate the pressure 
drop, Ap, that occurs as the fluid moves from the source at 
x = 1 to the sink at x=x..  Hence, using the definition of 
the pressure coefficient Cp given in the Notation, and 
assuming incompressible flow, Eq (1) can be written in the 
integral form 

L C~= 2 x(~/~r) 2 dx (2) 
a 

Eq (2) can be integrated if V~/f~r is known; for 
simplicity, Eqs (1) and (2) of Part 1 are used. This assumes 
that the flow outside the boundary layers in the source 
region is a free vortex, and that the boundary layers 
elsewhere are Ekman layers. Hence, for laminar Ekman- 
layer flow, 

Cp = (x. 2 - xE) + 412, I ln(xo/x.) 
+ 2(~ (x~- z _ x~- z) + c 2 (x~- z _ 1) (3) 

where x~ is calculated from Eq (5) of Part 1. For  turbulent 
flOW, 

c ~  = (x~ z - x 2 ) + ~ 12TI(X 3/8 -- X~ Is) 

+~ 2vZ(x; 5/4 _ x(5 / ' )  +c2(x~-2 _ 1) (4) 

where x, is calculated from Eq (6) of Part 1. 

Flow and heat transfer in cylindrical cavity. 2 

These equations are only valid for 121 < c (that is, 
for x~ > x., such that the source region does not fill the 
entire cavity). For  [21 ~>c (that is, for the case where the 
source region does fill the cavity), free vortex flow is 
assumed to occur throughout, and 

Cp=c~(x~ 2-1) (5) 
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Fig 3 Variation of tangential component of velocity with 
radius for isothermal flow (shroud E): (a) Re,<180, 
laminar theory," (b) Re,> 180, turbulent theory 
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Fig 4 Variation of tangential component of velocity with 
radius for isothermal flow (shroud F): (a) Re,<180, 
laminar theory; (b) Re,> 180, turbulent theory 
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For the limiting case of zero flow rate (2 = 0), xe = cl/2, and 40 / 
Eqs (3) and (4) both reduce to 

Cp=c(Z-c ) -xJ  (6) 

For all practical cases, Eqs (5) and (6) provide the 
upper and lower bounds, respectively, for the pressure 
drop in the cavity. Using Eqs (3) and (4), the calculated 30 
variation of Cp with J2L[ and 12vl is shown in Fig 5 for 
0.1~<c~<l and xa=0.1. It should be noted that these 
equations do not include the 'inlet loss' (the pressure drop 
that occurs as the fluid passes through the holes in the 
shroud) or the 'exit loss' (that occurs as the fluid leaves the 
cavity); these losses can be determined empirically, as 
discussed below. @ zo 

ICwl/103 0 0.95 1 .45  2.75 7.0 

Uncorrected data x n c, 0 ~= 

Corrected data x • • • 4 

Eq L4.4)-(c = 0.59, x o = O.I) 

Pressure measurements 

As described in Part 1, the radial pressure drop across the 
cavity was measured using a static pressure tap on the 
stationary piping downstream of the cavity. This 
measurement represented the overall pressure drop, 
relative to atmospheric pressure outside the cavity, and 
included the pressure 'losses' across: (i) the shroud itself; 
(ii) the cavity; (iii) the exit from the cavity to the stationary 
piping. The inlet loss (i) and exit loss (iii) must be found 
empirically, but the pressure drop across the cavity can be 
calculated as described above. 
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Fig 5 The effect of the swirl fraction, c, on the variation of 
C o with (a) [2L[ and (b) [2T[ according to Eqs (3) and (4) with 
x,=O.l 
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The variation of Cp with Re, for shroud A 

2 . 4  

The inlet and exit losses were determined, for 
shroud A, by measuring the overall pressure drop when 
the cavity was stationary; no estimates were practicable 
when the cavity was rotating. It should also be pointed 
out that most of the pressure measurements were made 
during the heat transfer experiments: a separate 
programme of pressure measurements was not 
conducted. For  this reason, and owing to the difficulties in 
estimating the inlet and exit losses, the measurements 
were subject to indeterminate errors. Although tests were 
made with a number of the shrouds, only the results for 
shroud A (for which data were available to estimate the 
inlet and exit losses) are presented below. 

Fig 6 shows the variation of Cp with Re, for 
0~<lfwl~<7000. The 'uhcorrected data' are based on the 
measured pressure drop, and the estimated inlet and exit 
losses have been subtracted from these to produce the 
'corrected data'. The theoretical curves are based on Eq (4) 
with xa =0.1 and c =0.59, which is the value for the swirl 
fraction that was used above. Bearing in mind the 
experimental difficulties, agreement between the corrected 
data and the theoretical curves is good. For  Cw = 0, Eq (4) 
reduces to Cp = 0.82; the experimental data are correlated 
by Cp=0.83. 

Fig 7 shows the variation of Cp with Cw for 0.25 ~< 
Re4,/lO 6 ~<2.2; only corrected data are shown, and the 
theoretical curves are again based on Eq (4) with xa = 0.1 
and c =0.59. The agreement between the measured and 
calculated values is reasonable, although there is a 
tendency for the theoretical curves to underestimate the 
data at the lower values of Re,. It is of some interest, and 
some design significance, that pressure coefficients as 
much as twenty times the 'solid-body-rotation' value 
(Cp= 1) have been measured and predicted. 
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Heat  t ransfer  measurements  

Experimental technique 

The thermocouple readings on the front (cooled) and back 
(heated) faces of the heated disc were used as boundary 
conditions for the numerical solution of Laplace's 
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Flow and heat transfer in cylindrical cavity. 2. 

equation. Assuming an axisymmetric temperature 
distribution, the interior temperature of the disc and the 
surface heat flux, q, were computed as described by Owen 
and Bilimoria 4 and Owen and Onur  5. The average 
Nusselt number, NU,v, was then calculated from 

Nuav =qavb/k(T~ - Tl)av (7) 

where k is the thermal conductivity of the air, Ts is the 
surface temperature of the front (cavity-side) face of the 
disc, T~ is the coolant inlet temperature, and 'av '  refers to 
the radially-weighted average value. 

It should be noted that q is taken to be positive 
when the heat flows from the disc into the cooling air. 
Under some conditions, it is possible for q to be negative 
even when (T~-T0 is positive; this occurs when the 
cooling air, which flows radially inward, becomes heated 
to a temperature greater than that of the disc. Fig 8 shows 
typical radial temperature profiles for the heated disc, and 
the crossover of the front and back face temperatures at 
x ~-0.5 illustrates the effect referred to above. For  smaller 
radii, where q is negative, the local Nusselt numbers are 
also negative. 

The coolant inlet temperature, T~, was determined 
from an axial traverse. The temperature probe was 
located outside the cavity, on the rotational axis, at a 
radial distance of 11 mm from the shroud; it was traversed 
over the axial width of the holes in the shroud. The outer 
faces of the rotating discs acted as free discs, and their 
boundary layers flowed radially outward on each side of 
the shroud. As a consequence, hot air from the back 
(outer) face of the heated disc could be entrained into the 
cooling air entering the cavity. At the higher rotational 
speeds, where this 'free disc pumping'  was significant, the 
inlet temperature of the cooling air could be as much as 
7°C higher than the ambient temperature, which was 
approximately 25°C. For all the tests, the maximum disc 
temperature was approximately 100°C, and this 
maximum occurred at x 20.8. 
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Fig 9 The effect of shroud hole-geometry on the average 
Nusselt numbers for radial inflow 

Average Nusselt numbers 

For radial outflow (using a cavity with one disc heated 
and a 'central-inlet shroud' similar to shroud A), Owen 
and Onur correlated their turbulent forced convection 
data in three regimes: 

- -  | 0 4 ( ' 2 / 3 ~ r  1/6 ( 8 a )  Regime I :  N u a v -  . . . . .  w - 

Regime II: Nuav=O.O7Re~/2C~/3 (8b) 

Regime III:  N u a v  = 4.11Re~/9Clw/2G1/9 (8C) 

The boundaries between the three regimes were 
delineated by the intercepts of the curves defined by Eqs 
(8a--c). Regime I is associated with flows in which the 
source region fills the entire cavity; Regimes II and III  are 
associated with Ekman layer flow. It should be noted that 
the above correlations, which are for the heated disc, were 
obtained using a rig virtually identical to that used for the 
experiments reported here. 

Fig 9 shows the variation of Nuav with Re~ for 
radial inflow, with shrouds A, B and C, for 0.28~< 
ICwl/104~<2.8 (and G=0.133); also shown is the 
correlation for radial outflow given by Eq (8). As Rer > 180 
over the entire surface of the disc if ICwl > 1130, the flow 
should be turbulent for the range of Cw tested. 

Referring to Fig 9a, it can be seen that the data for 
shroud A are close to the outflow correlation. The average 
Nusselt numbers for shroud C (the 'side-inlet' shroud) are 
higher than those for shroud B (the 'twin-inler shroud); 

both sets of data are higher than those for shroud A. This 
is not unexpected: for shroud A, all the coolant enters near 
the mid-axial plane of the cavity; for shroud B, half the 
coolant enters adjacent to the hot disc; for shroud C, all 
the coolant enters adjacent to the hot disc. 

No data are available for shroud C at the higher 
values of ICwl, but Figs 9b, c and d for shrouds A and B 
show a similar relationship to that described above, 
although the differences between the results for the two 
shrouds are smaller. For  rCwl>0 .7x l0  4, the average 
Nusselt numbers for radial inflow tend to be lower than 
the outflow correlations. 

C o n c l u s i o n s  

Measurements of the velocity, pressure drop and heat 
transfer have been made inside a rotating cavity with a 
radial inflow of coolant. Experiments were conducted in a 
cavity with an axial gap to outer radius ratio of s/b = 0.133 
and an inner to outer radius ratio of a/b = 0.1; five different 
perforated and slotted shrouds were used to test the effect 
of inlet geometry. 

The tangential component  of velocity was 
measured, using a laser-doppler anemometer,  for 400< 
ICwr < 1500 and 105 < R% < 6 x 105. For the outer part of 
the source region, the experimental data were consistent 
with free vortex flow. The swirl fraction, c, imparted to the 
fluid at entrance to the cavity, depended on whether the 
shroud had a series of holes (that is, the shroud was 
'perforated'), an open slot or a foam-filled slot: for the first 
two cases, c < 1 ; for the latter case, c = 1. The experimental 
data in the interior core were, in the main, in good 
agreement with the nonlinear laminar and turbulent 
Ekman-layer theory. For the cases where the source region 
filled all, or most, of the cavity, the nonlinear theory 
tended to overestimate the measured tangential 
component  of velocity. 

A theoretical estimate of the radial pressure drop 
inside the cavity has been made by using the linear 
Ekman layer model described in Part 1. Pressure 
measurements were made for one of the perforated 
shrouds with 0~< ICwl < 7000 and 0.1 < R%/lO 6 < 2. The 
corrected pressure coefficients (in which the estimated 
inlet and exit losses were subtracted from the total 
measured pressure drop) were in reasonable agreement 
with the theoretical values. Under some conditions, 
pressure drops of magnitude as much as twenty times 
those associated with solid-body rotation were measured 
and predicted. 

Average Nusselt numbers were measured, for the 
case when one disc in the cavity was heated, for 2800 < 
ICw1<28000 and 2 x 1 0 4 < R % < 2 × 1 0 6 .  Tests were 
conducted using each of the three perforated shrouds, and 
the variations in the magnitude of the Nusselt numbers 
were consistent with the hole geometry in the shroud. For 
similar conditions, the magnitudes of the average Nusselt 
numbers were similar to those reported for radial outflow 
tests. 
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Computational Fluid 
Mechanics and Heat Transfer 

D. A. Anderson, J. C. Tannehill and 
R. H. Pletcher 

The book was written in a textbook format based on 
course notes used in an advance level and graduate course 
at Iowa State University. In an introductory section a 
brief review of the physical significance and the 
mathematical behaviour of the most common partial 
differential equations encountered in fluid mechanics and 
heat transfer is presented, followed by the introduction of 
the basic fundamentals of finite difference techniques. 
These techniques are then applied to obtain the solution 
of selected model equations (wave, conduction, Laplace 
and Burgers). The individual characteristics of the various 
schemes are illustrated and discussed. 

The remainder of the book is devoted to specific 
applications. A detailed discussion of the appropriate 
differential equations including those associated with 
turbulent flows, is followed by a detailed study of the 
numerical solutions of the equations associated with 
invicid flow, boundary layer, 'parabolized' Navier Stokes 
and the complete Navier Stokes equations. The last topic 
discussed is grid generation. 

The treatment of the fundamentals and the 
application of finite difference techniques in fluid 
mechanics and heat transfer is well organized and 
masterfully presented. No generalized programs are 
presented, but the reader is given all the information he 
needs to formulate his own program or gain a more 
complete understanding of an existing algorithm. This 
book will make a valuable addition to the library of those 
involved in CFD activities. 

Frank W. Schmidt 
Department of Mechanical Engineering, 

Pennsylvania State University, 
PA, USA 

Published, price $125.00, by Hemisphere Publishing Corporation, 79 
Madison Ave, New York, NY 10016, USA, 1181 pp. 

Natural Convection 

S. Kakac, W. Aung and R. Viskanta 

Buoyant forces play a very important role in a large 
number of flows found in our environment and in 
engineering applications. While we have made 
considerable progress since 1960 in our understanding of 
these flows, this information has not been collected and 
documented in a well organized presentation of the 
subject. It is also recognized that our knowledge of a 
number of the phenomena involved is so limited that 
accurate predictions of the rate of heat transfer and details 
of the flow can not be made at the present time. 

In recognition of the importance of natural 
convection a NATO Advanced Study Institute was held 
in 1984 to disseminate current information and highlight 
areas in which there is a critical need for further study. 
This book is composed of lectures and papers presented at 
the Advanced Study Institute. 

Specific topics discussed include: external 
boundary layer flows; plane layers; flows in enclosures 
and in the presence of a stratified fluid; natural convection 
in porous media and in melting and solidification; and 
mixed convection. Specific emphasis is also placed upon 
turbulence modelling and the influence of temperature 
dependent properties. 

Like many proceeding volumes there is an 
unevenness in the treatment of some of the topics. Of 
particular interest are the contributions dealing with 
turbulence modelling, mixed convection, natural 
convection in melting and solidification process and the 
summary article dealing with still unsolved problems in 
natural convection. The editors are to be congratulated 
for assembling an extremely useful book for those 
interested in buoyant driven flows. 

Frank W. Schmidt 
Department of Mechanical Engineering, 

Pennsylvania State University, 
PA, USA 

Published, price $39.95, by Hemisphere Publishing Corporation, 79 
Madison Ave, New York, NY 10016, USA, 599 pp. 
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